REPUBLIQUE RWANDAISE

EXAMEN NATIONAL DE FIN D'ETUDES SECONDAIRES 2000/2001

EPREUVE: MATHEMATIQUE II

OPTIONS: BIOLOGIE-CHIMIE

ECONOMIQUE

DUREE: 3 HEURES

INSTRUCTIONS

- Chaque candidat est invité à répondre à toutes les 15 questions de la section A et à 3 questions de son choix de la section B.

- L'usage des instruments de géométrie et des calculatrices est autorisé.

SECTION A.

- 1. On définit la fonction $f: \mathbb{R} \to \mathbb{R}: x \to \sqrt{(x-1)^2} + \frac{2}{x+1}$.
 - a) Déterminer le domaine de définition de f.
 b) Trouver les asymptotes à la courbe représentative de f.
 3,5pts
- 2. Soient k un nombre réel et g une fonction numérique de variable réelle définie par :

$$\begin{cases} \forall x \in]-\infty,1 \]: g(x) = kx + \frac{11}{4} \\ \forall x \in]1,+\infty[\ : g(x) = \frac{2x+3}{x+1} \end{cases}$$

Trouver le nombre k si g est dérivable en 1. Préciser alors le nombre dérivé de g en 1. 3pts 1pt

3. Résoudre l'équation suivante dans R:

$$\frac{5u}{u-2} + \frac{3+u}{u} = \frac{4u+3}{u^2 - 2u}$$

3pts

4. Résoudre le système d'équations dans \mathbb{R}^2 (les inconnues sont x et y):

$$\begin{cases} x \cos t - y \sin t = a \\ x \sin t + y \cos t = b \end{cases}$$

4pts

5. Chercher les solutions de l'équation suivante $(x \in \mathbb{R})$ et les représenter sur un cercle trigonométrique :

$$\sqrt{3}\cos x + 3\sin x + 3 = 0.$$

4pts

- 6. Etant donnés deux nombres réels non nuls a et b, on considère la suite u définie par son premier terme u_0 et la formule de récurrence : $u_{n+1} = a u_n + b$.
 - a) Que peut-on dire de la suite u lorsque a est égal à 1?
 - b) En supposant que a est différent de 1, on pose $k = \underline{b}$

et on considère la suite v définie par ∀n ∈ N : V_n=u_n-k.

Démontrer que la suite v est une suite géométrique.

3pts

- 7. Dans l'espace euclidien muni d'un repère orthonormé $(0, \vec{e}_1, \vec{e}_2, \vec{e}_3)$, on considère les points a (2, -3, -1) et b(6, 5, -5).
- a) Trouver une équation cartésienne de la sphère S de diamètre [a, b].

2,5pts

b) Chercher une équation du plan P tangent en a à la sphère S. 1,5pts

- 8. Si x et y sont des nombres réels et n un nombre entier naturel :
 - a) développer $(x + y)^n$

1pt

- b) En donnant à x et y des valeurs convenablement choisies, calculez :
 - i) $2 + C_n^1 + C_n^2 + \dots + C_n^{n-1}$

1pt

ii) $1 + (-1)^n - C_n^1 + C_n^2 - C_n^3 + C_n^4 - \dots + (-1)^{n-1} C_n^{n-1}$

1pt

9. En appliquant la formule de Moivre et le binôme de Newton, exprimer $\cos 6x$ et $\sin 6x$ en fonction de $\sin x$ et $\cos x$.

4pts

10. Calculez $\lim_{x \to -4} \frac{\ln(x+5)}{x+4}$

2pts

11. Mettre sous la forme x + i y, où x et y sont des nombres réels, les nombres complexes suivants :

a)
$$\left(\frac{\sqrt{3}-i}{1+i\sqrt{3}}\right)^9$$

1,5pts

b) $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i} + \frac{\sqrt{3}-i}{\sqrt{3}+i} - 1\right)^{11}$

1,5pts

12. Résoudre dans R:

$$4 e^{3x} - 3e^{2x} - e^x = 0.$$

3pts

- 13. Une usine fabrique en très grande série un appareil pouvant présenter deux défauts seulement, désignés par A et B. Dans un lot de 1000 appareils prélevés, on constate que 100 présentent le défaut A, 80 présentent le défaut B et que 40 appareils présentent simultanément les défauts A et B. Un client achète un des appareils produits par l'usine. Calculer :
 - a) La probabilité po pour qu'il ne présente aucun défaut.
 - b) La probabilité p₁ pour qu'il présente le défaut A seulement.
 - c) La probabilité p₂ pour qu'il présente le défaut B seulement.
 - d) La probabilité p₃ pour qu'il présente simultanément les défauts A et B.

4pts

14. Déterminer la primitive de la fonction numérique de variable réelle définie par $f(x) = (2x+1)e^{-x}$ dont la représentation graphique passe par l'origine des axes de coordonnées.

4pts

15. Dans le plan muni d'un repère orthonormé $\left(0, \overrightarrow{e_1}, \overrightarrow{e_2}\right)$, on considère la courbe d'équation $4x^2 + y^2 - 4 = 0$.

Trouver les demi-axes, les sommets, les foyers, l'excentricité et les équations des directrices de la courbe.

5pts

SECTION B:

16. Etant donnée la fonction numérique F : $]0, + \infty[\rightarrow \mathbb{R} : x \rightarrow \int_{0}^{x} t \ln t \ dt.$

b) Dresser un tableau de variation de la fonction F.

a) Calculez F (x). 3pts

4pts

7pts

- c) Calculer l'aire de la partie A du plan limitée par la courbe représentative de F'(x), l'axe des abscisses et les droites
- d'équation $x = e^{-1}$ et x = 2 (prendre 2 cm pour une unité sur les axes).
- d) Ecrire l'équation de la tangente à l'extremum de la courbe représentative de F'(x).
- 17. a) Soit z le nombre complexe défini par z = √3 + i.
 Comment doit-on choisir le nombre entier relatif n pour que zⁿ soit un nombre réel ?
 6pts
 - b) Déterminer les nombres complexes (sous forme algébrique et sous forme trigonométrique) dont le carré est égal au conjugué. **9pts**
- 18. a) Ecrire sous forme trigonométrique les solutions dans \mathbb{C} de l'équation $z^4 = 8(1-i\sqrt{3})$. **6pts**
 - b) Représenter ces solutions dans le plan complexe muni d'un repère orthonormé $\left(0, \vec{e_1}, \vec{e_2}\right)$. 2,5pts
 - c) Vérifier que $\frac{\sqrt{6}-\sqrt{2}}{2}+i\frac{\sqrt{6}+\sqrt{2}}{2}$ est une solution de l'équation donnée en a). **2pts** En déduire l'écriture des autres solutions sous forme algébrique. **4,5pts**

19. Dans le plan π_0 muni d'un repère orthonormé $\left(0, \overrightarrow{e_1}, \overrightarrow{e_2}\right)$ considérer la droite D d'équation x = 1 et f le point de coordonnées a) (i) Déterminer une équation cartésienne de l'ensemble C des points m du plan vérifiant la relation entre les distances d suivante : $d(m, f) = \sqrt{3}$. d(m, D). 4pts (ii) Préciser la nature de l'ensemble C et donner deux de ses éléments 4pts caractéristiques. 2pts (iii) Tracer C dans le plan. b. Déterminer le nombre de points d'intersection de C et de la droite d'équation y = r x, r étant un paramètre réel. 5pts 20. Une urne contient trois dés cubiques : deux dés normaux dont les faces sont numérotées de 1 à 6 et un dé spécial dont trois faces sont numérotées 6 et les trois autres sont numérotées 1. On tire de l'urne, simultanément et au hasard, deux dés parmi les trois et on les lance. Soit A l'événement : « les deux dés tirés sont normaux » et B l'événement : « les deux faces supérieures sont numérotées 1». 1pt a) Définir l'événement contraire A de A 3pts b) Calculer les probabilités de A et de Ā 4pts c) Calculer p (B/A) puis p (BAA). 6pts d) Calculer p (B) 1pt e) Calculer p (A/B).